
Maphoon: A C
++ based Parser Generator

Hans de Nivelle

Nazarbayev University, Nur-Sultan City, Kazakhstan

Aspen, 05.05.2022

1

Pronunciation

Let’s start at the very beginning:

How do we pronounce ’Maphoon’?

I will be honoured in whichever way you choose to pronounce it,

but my preferred pronunciation is ’Mah-phone’ with the stress on

’Mah’.

’Maphoon’ does not rhyme with ’Lagoon’.

2

Kazakhstan and Nazarbayev University
• The present state of Kazakhstan exists since 1991, but Kazakh

as national identity exists much longer, since European middle

ages.

• Kazakhstan has approximately 19 million inhabitants, and a

large surface area 2, 724, 900 km2 (1, 052, 100 square miles), 9-th

largest in the world.

• Kazakhstan is rich in natural resources, oil and gas, coal and

metals (chromium, lead, uranium, copper, gold and zinc.)

• Unlike some its neighbours, the Kazakh government invests a

large fraction of the income from natural resources into

development.

3

• Nazarbayev University was established in 2010. Before that,

the best students were sent to universities abroad.

• NU has 4000 undergraduate students, 1500 graduate students,

and 700 students in the foundational year.

• Proficiency in English is a requirement for everyone.

• Students are required to live on campus, in order to reduce

inequality caused by background. All important decisions are

merit only.

• School of Engineering and Digital Sciences has 2000

undergraduate students, 300 graduate students.

4

Motivation

I am developing a programming language for implementation of

logic (verification of mathematical proofs and theorem proving).

For this language, I need a parser.

I have been teaching compiler construction, using Java as

implementation language.

There are very nice tools for Java, namely JFlex (www.jflex.de/)

for automated tokenizer generation, and CUP

(www2.cs.tum.edu/projects/cup/) for automated parser

generation.

I want to use C++ for the implementation of my programming

language, I wanted to use similar tools, but they were lacking.

In future version of the compiler construction course, I want to use

C++.

5

Motivation (2)

For big, established languages like C++ or C, one probably does

not need automatic parser generators.

Syntax does not change often, and the resources spent to

implementing the parser are small, compared to the total resources

spent.

For experimental languages, like mine, they are useful. It is very

easy to make changes in syntax, and use them.

I decided to write a tokenizer generator and parser generator by

myself.

6

What is Parsing?

In computer science, nearly everything can be represented as a tree.

We are given an input as sequence of characters. The task of the

parser is to extract the tree structure. The resulting tree is called

abstract syntax tree.

7

Example of an AST

if(c >= ’A’ && c <= ’Z’) c += ’a’ - ’A’;

// If c is upper case, make it lower case.

if

&& +=

≥ ≤
c −

c ′A′ c ′Z ′

′a′ ′A′

8

Tokenizing

Tokenizing is the first step.

Tokens typically have the following forms:

• Numbers (integers or floating point)

• Strings (Can be quite complicated, with escape codes)

• Reserved words, operators

• Comments

• Indentation changes (In Python, these are tokens)

9

Automatic Generation of Tokenizers

There exists a very nice theory for recognizing and classifying

tokens:

Regular Expressions ⇒ Non-Determinstic Finite Automata ⇒

Deterministic Finite Automata ⇒ Minimal Deterministic Finite

Automaton.

There exist many excellent tools that implement this theory, also

for C or C++ :

flex: (github.com/westes/flex),

re2c: (re2c.org/)

(There are more)

Why not use an existing implementation?

10

The problem is lack of flexibility.

There is always something that doesn’t fit in:

• My logic language uses Python-style indentation.

• It also uses comments of form #< ... ># , which can be

nested. (They play the role of #if 0 ... #endif). These

tokens are non-regular.

• Long comments of form /* */ should not be stored in

the buffer. It is better to handle these separately.

• For some languages (I will not mention their names), the

tokenizer must have access to type definitions.

• Some languages allow a certain token >> only in certain

contexts. (Again, I am not mentioning any names.)

11

I hesitated very long if it is worth automating tokenizing. In the

end, I did it, keeping the following goals in mind:
• Flexibility: It must be possible to handle some tokens by hand.

The tokenizer must not dictate how source information is

handled.

• Usable in education. I am a university professor and I want to

show automata to students.

• Efficiency (until flexibility has to be sacrificed)

I created the building blocks for the tokenizer, but not the

tokenizer itself.

On the next slide, I show a filereader class. It forms the buffer

between the tokenizer and the input source.

Since my tokenizer generator does not generate the complete

tokenizer, the user has to interact with this class.

12

Class Filereader

A filereader contains a pointer to a file. In addition to that, it

keeps track of line number and column position. It has an

unbounded buffer of characters that is initially empty.

The main methods are:

• bool has(size_t n) : Read characters from the source

until the buffer has size n and return true on success.

• char peek(size_t i) const : Get the i-th character from

the buffer.

• string_view view(size_t i) const : Get the first i

characters in the buffer as string_view.

• commit(size_t i) : Remove the first i characters from the

buffer. The buffer must contain n ≥ i characters, and after

committing, it contains n− i characters.

13

Recognizing Tokens by Hand (1)

For the

symbols that you want to recognize by hand, write a function of form:

std::pair< symboltype, size_t > try_X(filereader& inp).

If the attempt failed, the second field must be 0.

It is possible to recognize more than one type of symbol in a single

function.

The following function may return different symbol types

dependent on the type of number:

std::pair< symboltype, size_t >

try_number(filereader& inp)

14

Recognizing Tokens by Hand (2)

This is how one interacts with filereader:

std::pair< symboltype, size_t >

tokenizer::try_identifier(filereader& inp)

{

if(inp. has(1) && starts_ident(inp. peek(0)))

{

size_t i = 1;

while(inp. has(i+1) &&

continues_ident(inp. peek(i)))

++ i;

return std::pair(sym_IDENT, i);

}

else

return std::pair(sym_IDENT, 0);

}

15

Automatic Recognition

For the remaming tokens, we build a finite automaton:

Building the automaton. For the time being, we recompute

automaton every time the program is started:

static lexing::classifier< char, symboltype >

cls = buildclassifier();

Using the automaton:

std::pair< symboltype, size_t >

p = readandclassify(cls, inp);

inp is a filereader&, and the return value is the same as for

hand-written functions.

16

Refreshing Automata: Identifier and a reserved Word
”while”

qs qid

q1 q2 q3 q4 qwhile

a..z |A..Z |

a..z |A..Z | 0..9 |

w

h i l e

17

Flat Automata

We use a nice and simple way for representing finite automata.

A state is a triple (Λ, φ, T), in which

• Λ is a set of integers, representing the ǫ transitions.

• φ is an ordered map from char to (integer or #), representing

the transitions from this state. It must have at least have a

value for the minimal char. (I will assume it is −128.) In order

to apply it on character c, find the (c′, n) ∈ φ with maximal

c′ ≤ c.

• T is the classification of the state.

A classifier is a vector of states. We use relative addressing for

state references.

18

nr Λ Φ T

0 : {1, 4} { (−128,#) } err

1 : { } { (−128,#), (A, 1), (Z+1,#), (a, 1), (z+1,#) } err

2 : {1} { (−128,#), (0, 0), (9+1,#), (A, 0), (Z+1,#),

(, 0), (+1,#), (0, 0), (9+1,#) } err

3 : { } { (−128,#) } ident

4 : { } { (−128,#), (w, 1), (w+1,#) } err

5 : { } { (−128,#), (h, 1), (h+1,#) } err

6 : { } { (−128,#), (i, 1), (i+1,#) } err

7 : { } { (−128,#), (l, 1), (l+1,#) } err

8 : { } { (−128,#), (e, 1), (e+1,#) } err

9 : { } { (−128,#) } while

19

Remaining Topics

I show you in code

• How the classifier is created, using code.

• The classifier.

• How to make the classifier deterministic.

• How to minimize the classifier.

• How to deal with EOF and bad files.

• How to ignore whitespace and comments.

• How to compute attributes.

• How to obtain a maximally(?) efficient tokenizer, using truly

dirty trickery.

This completes the topic of tokenizing.

20

Parsing
We are now at the second stage. We have cut the input in

bite-sized pieces, and we need to build a tree from them.

We, as professors, torment our students with the following

definition:

A context-free grammar G = (V,Σ, R, S) is a quadruple consisting

of:

• A finite set of non-terminal symbols V.

• A finite set of terminal symbols Σ,

• A set of rules of form α → w, with α ∈ V and w a finite word

over V ∪ Σ,

• A start symbol S.

Unfortunately, this definition is not usable in practice.

21

Attribute Grammars

Definition: An attribute grammar has form G = (Σ, A,R, S, T), in

which

• Σ is the set of symbols. We don’t distinguish anymore between

terminal symbols and variable symbols.

• A is a function that attaches to each σ ∈ Σ a non-empty

attribute set A(σ).

• R is a set of rewrite rules.

• S ∈ Σ is the start symbol, T ⊆ Σ is the set of terminator

symbols. These are symbols that follow after a correct input

(e.g. EOF or ;).

We define Σ⊗A = { (σ, a) | σ ∈ Σ and a ∈ A(σ) }. These are the

valid symbols.

22

The formal notation may look a bit frightening, but it is totally

natural.

For C language, one could have (extremely simplified):

Stat → while (E) Stat

→ do Stat while (E) ;

→ if (E) Stat

→ if (E) Stat else Stat

→ for (Stat Stat) Stat

→ for (Stat Stat Stat) Stat) Stat

σ(Stat) is the set of all possible ASTs that represent a statement.

Similarly, σ(E) is the set of all possible ASTs that represent an

expression.

23

Standard Example: Calculator

The calculator can evaluate simple expressions of form:

1 + 2 * 3;

--> 7

a := 1 + 1;

--> assigning a := 2

a - a * 4;

--> -6

We use the standard operators: +, -, *, /, where * and / take

priority over + and -.

It is possible to assign to variables using :=

24

The rewrite rules are (first attempt):

S → ǫ | S C

C → E ; | ident := E ;

E → E + E | E − E | E ∗E | E /E | − E | (E)

E → double | ident | (E) | ident(A)

A → E | A, E

S is the start symbol. It represents a complete session. C is a

single command.

25

Ambiguity

Problem: No control over evaluation order.

E ⇒ E + E ⇒ E + E ∗ E ⇒ · · · ⇒ double + double ∗ double

(∗ evaluated first.)

E ⇒ E ∗ E ⇒ E + E ∗ E ⇒ · · · ⇒ double + double ∗ double.

(+ evaluated first.)

When a same input word can be obtained in different ways by

applying the grammar, this is called ambiguity. Ambiguity is bad,

because different derivations will result in different meanings.

26

Solution: Split E into different symbols, representing the different

priority levels:

S → C | S C

C → E ; | ident := E ;

E → E + F | E − F | F

F → F ∗G | F /G | G

G → −G | H

H → double | ident | (E) | ident(A)

A → E | A, E

Rest I show in Maphoon syntax:

27

%startsymbol Session EOF

// startsymbol with terminator EOF.

%symbol EOF BAD

%symbol{ std::string } SCANERROR IDENT

%symbol SEMICOLON ASSIGN COMMA

%symbol{ double } DOUBLE

%symbol PLUS TIMES MINUS DIVIDES

%symbol LPAR RPAR

%symbol{ double } E F G H

%symbol{ std::vector<double> } Arguments

%symbol Session Command

%symbol COMMENT WHITESPACE EMPTY

Going back to the definition on slide 22, we now defined Σ, A, S,

and T.

28

Directions of Parsing

Given a sequence of tokens (with attributes), the parser constructs

a derivation of this sequence of tokens, and use this derivation to

attach a meaning to the input.

Parsing can be either top-down or bottom-up.

Maphoon constructs a bottom-up parser, but I will shortly discuss

top-down parsing.

29

Top-Down Parsing

With top-down parsing, the parser starts with the start symbol S,

and rewrites towards the given symbol sequence.

At each point during parsing, the parser knows which symbol it

needs to obtain, looks at the next symbol in the input, and decides

which rule must be applied.

For example, if one needs to obtain a Stat, and the next symbol is

while, the parser knows that rule Stat → while (E) Stat must be

applied.

Major disadvantage of top-down parsing is that decisions must be

made at the beginning of rules. Rules that have common

beginnings are a probem.

For example, if one needs Stat, and the next symbol is if , the

parser cannot select the rule.

30

Bottom-Up Parsing

The parser starts with the input word, and applies the rewrite rules

from right-to-left.

As far as I know, bottom-up parsing is always shift-reduce parsing.

The parser uses two variables: The parsestack (stack of symbols

with attributes), and a lookahead (optional symbol).

shift (Lookahead must be defined): Push the current lookahead to

the stack. Make the lookahead undefined.

reduce (The top of the stack must contain the right hand side of a

rule): Remove the right hand side from the stack, and replace

it by the left hand side of the rule. Compute the attribute of

the new symbol.

read (Lookahead must be undefined): Read a symbol from the

input source and put it in lookahead.

31

Bottom-Up Parsing: Computing the Attributes

When a rule is applied from right to left, one must compute the

attribute of the left hand side.

In order to do this, we attach code fragments to rules:

E => E:e PLUS F:f { return e + f; }

| E:e MINUS F:f { return e - f; }

| F:f { return f; }

;

The code fragments are usually called action code. It must return

the attribute of the left hand side (if it is not void).

32

Examples of Action Code

E => IDENT: id

{

if(memory. contains(id))

return *memory. lookup(id);

else

{

errorlog. push_back(

std::string("variable ") +

id + " is undefined ");

return 0.0; // An arbitrary choice.

}

}

| DOUBLE : d { return d; }

;

33

Examples of Action Code (2)

E => IDENT:id LPAR Arguments:args RPAR

{

if(id == "sin" && args. size() == 1)

return sin(args[0]);

if(id == "pow" && args. size() == 2)

return pow(args[0], args[1]);

errorlog. push_back(

std::string("unrecognized function ") + id);

return 0.0; // An arbttrary choice.

}

;

34

Examples of Action Code (3)

Arguments => E:e

{

return { e };

}

| Arguments:a COMMA E:e

{

a. push_back(e);

return a;

}

;

35

Examples of Action Code (4)

Command => E:e SEMICOLON

{

if(errorlog. size())

{

printerrors(errorlog, std::cout);

errorlog. clear();

}

else

{

std::cout << "---> " << e << "\n";

}

}

36

Examples of Action Code (5)

Command => IDENT:id BECOMES E:e SEMICOLON

{

if(errorlog. empty())

{

std::cout << " assigning: ";

std::cout << id << " := " << e << "\n";

memory. assign(id, e);

}

else

{

printerrors(errorlog, std::cout);

errorlog. clear();

}

}

37

Making the Decisions

The hard part of this process is deciding between shift and reduce,

in case where the stack contains the complete right side of a

grammar rule.

Compared to top-down parsing, bottom-up parsing has one big

advantage:

A decision whether to reduce has to be made only when the

complete right hand side has been read.

At the moment, the decision needs to be made, we have more

information.

38

Bottom-Up Parsing (Decision Making) (2)

Decisions can be made as follows (see e.g. the Dragon Book):

The state of the parser is called viable, if it is possible to continue

into a succesful parse.

A word is viable if there exists a viable state of the parser, in which

the parse stack contains this word.

Theorem: The set of viable words is regular. Hence it can be

recognized with a deterministic finite automaton (the prefix

automaton).

So how do we make the decisions? ⇒ Compute the prefix

automaton in advance, and never do anything that makes the parse

stack non-viable.

39

Maphoon

Maphoon reads the grammar and the action code.

It creates two files symbol.h and symbol.cpp containing the

symbol definition.

It also creates two files parser.h and parser.cpp containing a

runnable parser that correctly applies the action code when a rule

is reduced.

Every class that has correct life cycle operations (constructor,

assignment, destructor) can be used as attribute.

It is even better when attributes are movable.

In my view, bottom-up parsing is easier than top-down parsing if

one has the proper tools.

40

Beyond the Dragon Book: Adding Preconditions

Some languages (e.g. Prolog) allow to define operators at run time.

That means that we cannot specify the grammar in advance. The

approach on slide 22 will not work.

One could try to recompute the prefix automaton at runtime, but

that will not be easy, and it will be computationally expensive.

Instead, we use a simple, ambiguous grammar, and attach runtime

preconditions to rules.

A rule can only be reduced if its precondition evaluates to true.

41

Preconditions

Preconditions are similar to action code. It can const-ly see the

attributes of the right hand side of the rule, the lookahead, and

additional fields of the parser. It must return return bool.

The precondition decides if the reduction can happen.

42

Example from Prolog

Prefix => IDENTIFIER : id

%requires

{ return synt. hasprefixdef(id) &&

canstartterm(lookahead. value()); }

%reduces

{ return synt. prefixdef(id); }

;

Infix => IDENTIFIER : id

%requires

{ return synt. hasinfixdef(id) &&

canstartterm(lookahead. value()); }

%reduces

{ return synt. infixdef(id); }

;

43

Example from Prolog (2)

Term => Prefix:op Term:t

%requires

{ return canreduce(synt, op, lookahead. value()); }

%reduces

{ return

new functional(function(op. str, 1), { t }); }

| Term:t1 Infix:op Term:t2

%requires

{ return canreduce(synt, op, lookahead. value()); }

%reduces

{ return

new functional(function(op. str, 2), { t1, t2 });

}

44

Another Example: Context Sensitive Keywords

LeftRightStat => CHAR : c

%requires

{ char c1 = toupper(c);

return c1 == ’L’ || c1 == ’S’ || c1 == ’R’; }

%reduces

{

char c1 = toupper(c);

if(c1 == ’L’) return -1; // left

if(c1 == ’R’) return 1; // right

return 0; // stationary.

}

;

(This comes from a Turing-Machine simulator)

45

Error Handling

Shift-reduce parsing detects a syntax error at the earliest possible

point.

It is possible to accurately report the position of the error.

Shift-reduce parsing is quite good at error recovery. I copy the

approach from Yacc, and it works well.

But shift-reduce parsing is not good at creating meaningful error

messages. This is a traditional weakness of bottom-up parsing.

Maybe I solved this problem.

46

Recovery

Recovery is done by throwing away symbols, until a

synchronization point is reached.

Synchronization points are defined by rules of form

Command => _recover_ SEMICOLON

{

if(debug)

std::cout << "recovered from syntax error\n\n";

} ;

After a syntax error, the parser throws away symbols until it

encounters a (;). After that, it reduces the rule, and starts a trial

period.

If a new error occurs during this time, the parser will treat it like a

failed recovery, instead of a new error.

47

Error Reporting

What should one say to the user?

(1))

1 2

f(,

f b

1 + *

)

48

Error Reporting (2)

In order to obtain an error message, we try to find out what is

expected, and we consider the current lookahead:

expectation lookahead message

unknown unknown ’syntax error’

unknown L ’unexpected L’

X unknown ’expected X’

X Y ’expected X instead of Y’

Expections are obtained by matching a restricted form of regular

expressions into the parse stack.

I show examples in code, because it is an empirical process.

49

Summary, Conclusions

I created tools for generating tokenizers and parsers. The parser

generator is similar to Bison/Yacc/CUP, but supports C++.

The tools fulfill my own needs. I hope they will fulfill the needs of

others too.

Theory is great, it is nice to implement, it can solve your problems,

but you have to be flexible.

Target group:

Tokenizer toolbox ⇒ There is no excuse for anyone.

Parser generator ⇒ Experimental languages, teaching.

Systems can be downloaded from www.compiler-tools.eu/

50

Thanks!

Thanks to Danel Batyrbek, Aleksandra Kireeva, Tatyana

Korotkova, Dina Muktubayeva, Cláudia Nalon, and Olzhas

Zhangeldinov.

I also thank Nazarbayev University for supporting this project

through the Faculty Development Competitive Research Grant

Program (FDCRGP), grant number 021220FD1651.

51

Skipped During Presentation: Top-Down Parsing

Below follows a short discussion of top-down parsing that I skipped

during the presentation.

52

Top-Down Parsing (1)

With top-down parsing, the parser starts with the start symbol S,

and rewrites towards the given symbol sequence.

At each point during parsing, the parser knows which symbol it

needs to obtain, looks at the next symbol in the input, and decides

which rule must be applied.

In order to do this, one needs a stack of expected symbols. The

first expected symbol is on the top of the stack.

Top-down parsing can either be implementd by tables, or

implemented by hand. This is called recursive descent. In case of

recursive descent, no explicit stack is needed, because the call stack

can be used.

53

Top-Down Parsing (2)

For each symbol E that occurs as left hand side of some grammar

rules, write a function parseE that recognizes the words that can

be obtained from E. It must return the attribute of the found E.

Function parseE looks at the next symbol in the input, decides

which grammar rule for E applies, and processes the input. If

necessary, it calls parseV for another symbol V.

54

Top-Down Parsing (3)

It is usually necessary to change the grammar. For example, with

rules E → E + F | E − F | F, the function parseE has to start

by recursively calling parseE or parseF.

The decision can be made only when + or − is encountered.

In order to solve this problem, the rules have to be merged into a

single rule with a regular expression to the right:

E → F (+F | − F)∗.

55

Top-Down Parsing (4)

Now one can write (simplified):

double parseE() {

double d = parseF();

while(lookahead == ’+’ || lookahead == ’-’) {

op = lookahead;

lookahead = tokenizer.read(); // get next lookahead.

double d2 = parseF();

d = d op d2;

}

return d;

}

Table-driven top-down parsing has the same problem, namely that

the grammar has to be changed to make it work.

56

