Using the Tokenizing Tools of Maphoon

Dina Muktubayeva and Hans de Nivelle
July 19, 2023

Abstract
We describe how the tokenizing tools of MaphTT are used.

1 Quick Start for the Impatient

Get the files from directory lexing. Create a main file that contains
main(int argc, char* argv[]) { }. You can also use the existing file
tester.cpp. Make sure that the file contains the following includes:

#include "algorithms.h"
#include "minimization.h"
#include "generators.h"
#include "deterministic.h"

Make sure that your compiler compiles it.
Now suppose we want to obtain the automaton for regular expression

(alb)*|a”.
Write:

using namespace lexing;

acceptor<char> reg = (just(’a’) | just(’b’)).star() |
just(’a’). star();

std::cout << reg << "\n";

This prints an acceptor that accepts the regular expression. As next step, we
want to make this automaton deterministic. Because MaphTT has no operations
on acceptor, except for constructing them, we need to obtain a classifier first.
A classifier has two template parameters, the alphabet and the type that we are
using for the token classes. If one cares about efficiency, the token class should
be int or a dedicated enum type. We don’t care about efficiency, so we just use
std::string. When a classifier is constructed, one needs to provide the default
classification that will be used when classification fails.

classifier< char, std::string > c1l("#error");
cl. insert(reg, "#ourlang");
std::cout << cl << "\n";

When the classifier is printed, it only prints the classifications of states that do
not classify as #error. We see a lot of e-transitions, starting from QO0, so we
write

cl = make_deterministic(cl);
std::cout << cl << "\n";

Unfortunately, this results in a logic_error, with an additional message that
empty word classifies as #ourlang. This is caused by the fact that the
original expression accepts the empty word, which would make it impossible
to construct a usable tokenizer. The empty word would be a valid token, and
the tokenizer would keep on returning this token forever. The problem can be
solved by replacing .star() by .plus() or by adding a terminator. We will
add (;) as terminator. Add the line

reg *= just(’;’);

Now the code runs and constructs an automaton with 5 states. This is ridicu-
lously many of course. We can add:

std::cout << "minimization\n";
cl = minimize(cl);
std::cout << cl << "\n";

This results in a classifier with two states. The final classifier is readable. State
QO loops on a,b and jumps to Q1 when a (;) is encountered.

2 Creating a Prototype

Assume we want to create a calculator, whose tokens are

e Identifiers.

Floating point numbers.

A few operators: +, -, *, /, %.
e Opening and closing parentheses: ().
e Semicolon to end the input: ().

Since we are going to care about efficiency eventually, we create an enumer-
ation type:

enum tclass

{
tc_float =1,
tc_ident = 2,
tc_add = 10, tc_sub = 11, tc_mul = 12, tc_div = 13, tc_mod = 14,
tc_lpar = 20, tc_rpar = 21,
tc_semicolon = 30
}s

When creating a tokenizer, we recommend that one creates the classifier in a
function. That will be easier for the later steps. So, we define

lexing::classifier< char, tclass > buildclassifier()

{
using namespace lexing;
classifier< char, tclass > cl(tc_error);
cl = make_deterministic(cl);
cl = minimize(cl);
return cl;
}

Adding tokens is straightforward:

auto idfirst = range(’a’, ’z’) | range(’A’, ’Z°);
auto idnext range(’a’, ’z’) | range(’A’, °Z’) |
just(’_’) | range(’0’, ’9°);

auto number = (just(’0’) |
(range(’1’, ’9’) * range(’0’, ’9’).star()));

cl. insert(idfirst * idnext.star(), tc_ident);

auto exp = (just(’e’) | just(’E’)) *
(just(>->) | just(’+’)). optiomal() *
(range(’0°, ’9’). optional() *
range(’0’, ’9’). optional() *
range(’0’, 9’). optional());

auto floatconst = number *
(just(’.’) * (range(’0’, ’9°).plus())). optional() *
exp. optional();

cl. insert(floatconst, tc_float);

cl. insert(just(’+’), tc_add);
cl. insert(just(’-’), tc_sub);
cl. insert(just(’x*’), tc_mul);
cl. insert(just(°/’), tc_div);
cl. insert(just(’%’), tc_mod);

cl. insert(just(’(’), tc_lpar);
cl. insert(just(’)’), tc_rpar);

cl. insert(just(’;’), tc_semicolon);

Token classes are printed as integers, which is a bit unpleasant. This prob-
lem can be solved by defining operator << on tclass. The parser generator!
automatically creates enum classes from the grammar with print functions.

Currently, the classifier will reject whitespace, so we add tc_whitespace = 40
to tclass and add the following code to buildclassifier:

cl. insert(just(’> >) | just(’\t’), tc_whitespace);

auto linecomment = word("//") =*
(every<char>(). without(’\n’)).star() * just(’\n’);
cl. insert(linecomment, tc_whitespace);

auto blockcomment = word("/*") *
(every<char>() .without(’*’) |
(just(’*’) .plus() * every<char>() .without(’/’).without(’*’)).star()
).star() * just(C’*’).plus() * just(’/’);

cl. insert(blockcomment, tc_whitespace);

Now the classifier classifies whitespace and both types of CTT-comments.
In addition to the constructors shown in the examples, one can also use word(),
which can be called with a string constant.

3 Using a Classifier

In the previous section we constructed a classifier. MaphTT does not create
complete tokenizers, it only helps with classifying. In particular, it doesn’t help
with computing token attributes. We think it is no problem because most tokens
have no attribute, and computing attributes is easy when the token has been
classified.

In order to classify input, one needs a class with at least the following meth-
ods:

e bool has(n). Make sure that there are at least n characters in the buffer.
Return true if this is guaranteed.

Inot ready for release

e C peek(i). Gets the i-th character. has(n) with n > ¢ must have been
called before, and must have succeeded.

e commit(i). Commit to ¢ characters. This means that ¢ characters will be
removed from the buffer. has(n) with n > ¢ must have been called before,
and must have succeeded.

We provide two classes that provide these methods: filereader and stringreader.

e A filereader can be obtained as follows:
filereader inp(&std::cin, "stdin");
or

std::string name = "filename";
std::ifstream inputfile(name);
filereader inp(&inputfile, name);

e A stringreader can be obtained as follows:
stringreader inp("3.14 / pi + 10");
or

std::string s = "input400 /*xxxx*/ ;";
stringreader inp(s);

or
stringreader inp(std::move(s));

Once one has chosen the reader of one’s fancy, one can call
auto p = readandclassify(cl, inp);

The result has type std: :pair<tclass,size_t>, where tclass is the recog-
nized class and size_t the number of characters read. We recommend to use
readandclassify as follows:

symbol gettoken(reader& inp)
{

static auto cl = buildclassifier();

restart:
if(!'inp. has(1))
return a symbol that marks end of file.

auto p = readandclassify(cl, inp);
if(p. second == 0)

{
inp. commit(1); // to avoid looping forever
return a garbage token
}
if(p. first is among the whitespace tokens)
{
inp. commit(p. second);
goto restart;
}
if(p. first is a token that has an attribute)
{
attr = the attribute (use inp. get()).
inp. commit(p. second);
return symbol(p. first, attr);
}

inp. commit(p. second);
return symbol(p. first); // without attribute.
}

If choosing is hard, one can also write:

template< typename S > symbol gettoken(S& inp)
{

}

If the user wants to create a different type of reader, this can be easily done.
Both filereader and stringreader have short implementations.

4 Making it Efficient

The tokenizer in the previous is convenient, but not efficient at all. The classifier
is recomputed every time the program is restarted, and direct use of the classifier
is not efficient, even when it is deterministic. MaphTT provides two solutions:

1. Create a table based classifier, like Lex or JFLEX.

2. Translate the classifier into directly executable CT* code.

The interface is primitive: In the function that builds the classifier, one prints

code that can be later compiled, and which can replace the call to buildclassifier().
Since classifiers are polymorphic in the character set C and the type T used

for classification, one needs to provide functions that print C and T. In case of

C = char, this is easy, because char can be printed as integers:

[1(std::ostream& out, char ¢) { out << (int)c; }

One can also print char with single quotes, but then one has to take care of
non-printable characters, which makes the function too complicated to define
in a single lambda expression.

Dealing with tclass is a bit more tricky, because enum is not well-designed.
The best solution is to print them by their names, but then one has to define
a print function for tclass, and we didn’t do that?. For the moment, we hack
ourselves out of the situation by creating code that casts integers into tclass:

[J(std::ostream& out, const tclass t)
{ out << "((tclass) " << t << "M)"; });

We describe the details:

¢ If one wants to create a table based classifier, one must use

template< typename C, typename T >

void printdeterministic(
const std::string& Cname, const std::string& Tname,
const std::string& name,
const lexing::classifier<C,T> & cl, std::ostream& file,
const std::function< void(std::ostream& out, const C& c)
const std::function< void(std::ostream& out, const T& t)

The parameter Cname is the name of the character type, which "char" in
our case. Similarly Tname must be "tclass". If C or T is in a namespace,
the namespace must be included. Parameter name is the name that the
function will receive. It should be something like "builddetclassifier.

Choose an unused file name (it will be overwritten!), and insert

std::ofstream file("det.h");
lexing: :printdeterministic< char, tclass > (
"char", "tclass", "builddetclassifier",
cl, file,
[J(std::ostream& out, char ¢) { out << (int)c; },
[1(std::ostream& out, const tclass t)
{ out << "((tclass) " << t << ")"; });
file. close();

before the return statement.

When buildclassifier() is called, it will construct the deterministic
classifier.

Include the resulting file before function gettoken, make sure that it com-
piles, and replace

2the parser generator will do it automatically

> & printC,
> & printT)

symbol gettoken(reader& inp)
{

static auto cl = buildclassifier();
by

symbol gettoken(reader& inp)

{
// static auto cl = calculator();
auto cl = builddetclassifier();

The procedure for creating a classifier in CTF code is similar. The function
that creates the code is:

template< typename C, typename T >
void printcode(
const std::string& Cname, const std::string& Tname,
const std::string& space,
const lexing::classifier<C,T> & cl, std::ostream& file,
const std::function< void(std::ostream& out, const C& t) > & printC,
const std::function< void(std::ostream& out, const T& t) > & printT)

The generated function will be called "readandclassify", preceded by
the namespace space. If space == "myspace::", then the generated
function will be called "myspace: :readandclassify".

At the end of buildclassifier, insert:

std::ofstream file("directlycoded.h");
lexing: :printcode< char, tclass > (
"char", "tclass", "",
cl, file,
[1(std::ostream& out, char ¢) { out << (int)c; },
[J(std::ostream& out, const tclass t)
{ out << "((tclass) " <<t << ")"; });
file. close();

Include the resulting file before function gettoken, make sure that it com-
piles, and replace

symbol gettoken(reader& inp)
{

static auto cl = buildclassifier();

by

symbol gettoken(reader& inp)

{
// static auto cl = calculator();
int cl = 22; // Any int will do

Since the directly coded classifier does not need any additional data, one
could in principle remove the variable c1, but if one does that, one may
have to put it back later when one wants to change the classifier again.
Because of this, we put an int in place of the classifier. The generated
function readandclassify has int as first parameter.

