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Abstract

TreeGen is a program that automatically creates CtT-class definitions
from definitions of recursive data types. TreeGen is by itself written in
C™. The generated class definitions use automatic memory management
(RAII), and start sharing subtrees when assigned or copied, while at the
same time strictly preserving value semantics, which means that there
will be no side effects caused by sharing. Memory management is done
by means of reference counting.

It is possible to use tree constructors that have an unbounded num-
ber of subtrees. Trees constructed by these constructors have vector-like
behavior. Their size can grow and shrink dynamically.

The generated tree classes support in-place rewriting. In-place rewrit-
ing is possible when the tree is not shared at all subtrees that do not have
an ancestor that is shared with another tree.

TreeGen is released under the Aladdin Free Public License (AFPL).

1 Structure of Generated Tree Types

TreeGen generates CT implementations of tree-like types, which are usually
recursive. A tree type can be in different states, dependent on the way it has
been constructed. We will call these states options. Dependent on its option,
a tree variable can have different fields. This implies that fields do not always
exist. There are four types of fields:

1. Prefix fields are stored locally in the tree, and do not depend on the option.
They can be used for storing a type, or storing source information.

2. Local fields depend on the option, but are still stored locally.
3. Scalar fields are stored on the heap.

4. Repeated fields are stored on the heap, and may be repeated arbitrarily
often. Repeated fields behave like vectors. They have to be indexed, and
their number can grow and shrink at runtime.

Recursion is possible only through scalar and repeated fields, because recursion
must involve a pointer. Earlier defined tree types can be be used in local fields,
or prefix fields without restriction. The pointers are not visible to the user.



The generated tree types fully support RAII, which means that their memory
management is completely automatic, and invisible to the user.

When a tree type is copied or assigned, the prefix fields and local fields are
also copied or assigned. Scalar and repeated fields are not copied, which implies
that they may become shared. Reference counting is used internally for memory
management.

Sharing creates a potential problem with assignment: If one assigns to a
shared part of a structure, this may result in unexpected changes in other vari-
ables that appear to be unrelated. In order to prevent this, we allow only const
access to scalar and repeated fields.

Scalar and repeated fields can be updated, for which we use a form of copy-
on-write (COW). When performing an update, the new value is compared with
the old value. If the values are the same, nothing is done. If the values differ
and the updated field is shared, a unique copy is created. After that the field
is assigned to. Since comparing values can be expensive, we use a combination
of value and reference equality for equality testing. This combination is called
very equal, and its opposite is called distinct.

The default behavior is that local and prefix fields are compared by operator
In case the operator != is inadequate, it is possible to specify different ways
of deciding distinctness. Scalar and repeated fields are compared by the pointer
that points to them, so they are not looked at during comparison. Updating
is subtle because in general, one wants to restrict the number of reallocations.
This is important for efficient rewriting. In particular, one wants to avoid that
replacement in a subtree that is recursively unique (not shared), results in a
reallocation. This can be only achieved by using std::move. We discuss the
interaction between moving, rewriting and updating separately in Section 5.

The current option of a tree type is determined by an enum type called
selector. Values of the selector are mapped to options. It is possible that dif-
ferent selector values use the same option. In order to determine which option is
currently used, one can either query the selector using method selector sel( )
or call a predicate bool option_is_X( ) const, where X is the name of the
option. The advantage of the first method, is that one can use switch.

If a tree has fields whose existence depends on the current option, (either
local, scalar, or repeated fields), then these fields cannot be directly accessed
from the tree. One must first create a view that corresponds to the current
option. After that, the fields can be accessed as fields of the view. The view
can be considered as a kind of downcast. Details are discussed in Section 4.2.

2 Running TreeGen

TreeGen must be called with exactly one argument, which is the name of the
input file. It will create output files whose names are specified in the input
file. It can create any number of output files, as long as they are in the same
directory. If the directory does not exist, TreeGen will not create it. There
are no requirements on the name of the input file, but I usually use .rec as

const,



extension.

3 Input Format

The input file must start with a %dir directive, that specifies into which direc-
tory the output files will be written. If the given directory is not absolute, the
directory will be relative to the directory from which TreeGen was called. The
following are examples:

hdir . // Use current directory
%dir logic // Use ./logic
%dir /home/nivelle/project // absolute directory

After that follows a namespace specification of form namespace N1 :: ... :: Nn.
This is the namespace in which all C*+ classes will be defined. The specifica-
tion can be empty, in which case the classes will be defined without namespace.
Here are a few examples:

%namespace // Without (or in top level) name space.
Jnamespace logic // In namespace logic.

If one wants to create tree types in different directories, one has to create dif-
ferent files.

3.1 Definitions of Tree Types

After the header, which consists of the output directory and namespace speci-
fication, there can be an arbitrary number of type definitions. They will be all
written in the same directory. Each type definition consists of a name, a list
of prefix fields, followed by a list of options. Every option consists of a list of
selector values that have the option, followed by the list of fields of this option.

Each type definition must start with %define N ( E ), where N is the name
of the type, and E is a selector that specifies the empty (moved out) option. Both
must be valid C™7 identifiers. The defined by E cannot have fields on the heap,
i.e. no scalar or repeated fields.

We give simply typed first-order logic as example. The definition is as fol-
lows:

Definition 3.1 We recursively define terms:

o Ifty,....tn (n > 0) are terms, f is a function symbol, then f(t1,...,tn)
is a term as well.

We assume a set of sorts S. Using sorts, simply typed formulas can be recursively
defined as follows:

e Ifp is a predicate symbol, t1,...,t, (n > 0) are terms, then p(t1,...,t,)
is a formula.



If t1,to are terms, then t1 =ty is a formula.

Both L and T are formulas.

If F is a formula, then —F is a formula.

If F1 and Fs are formulas, then Fy — Fy and Fy < F5 are also formulas.

If Fy,...,F, are formulas, then Fy A --- N F,, and F1 V --- V F,,, are
formulas.

If vy,...,v, is a sequence of variables, Si,...,S, a sequence of sorts,
and F is a formula, then Yvi:S1---v,: Sy F and Jvi:S1---v,: Sy, F oare
formulas.

This is the same definition using TreeGen:

%define term ( term_var )
%option var { term_var } => # var : std::string
%option func { term_func } => [ sub : term ], # f : std::string

%define formula ( form_bot )

%option atom { form_atom } => [ arg : term ], # pred : std::string
%option equals { form_equals } => # argl : term, arg2 : term
%option nullary { form_bot, form_top } =>

%option unary { form_not } => sub : formula

%option binary { form_implies, form_equiv }

=> subl: formula, sub2: formula

%option nary { form_and, form_or } => [ sub : formula ]
%option quant { form_forall, form_exists }

Class

=> body : formula, [ var : varwithsort ]

varwithsort can be defined as follows:

struct varwithsort

{

std::string var;
sort tp;

varwithsort( const std::string& var, const sort& tp )
: var( var ), tp(C tp ) { }

varwithsort( std::string&& var, sort&& tp )
: var( std::move( var )), tp( std::move( tp )) { }

bool operator == ( const varwithsort& other ) const
{ return var == other. var && tp == other. tp; }



In principle, the nullary option is redundant, because T = A{} and L = \/{ }.
We keep it here, because we want an option without arguments in the example,
and we can use it for the moved-out state.

3.2 Copied Code

After each tree type, after the options, it is possible to specify code that will be
copied into the output files, either the .h file or the .cpp file. The code to be
copied must be between braces { }. There are six possibilities, dependent on
where the code must be placed.

e h_incl: At the beginning of the header file, where normally the #includes
are written. Note that there are a few includes that must be always
present, see Section 4

e h_before : Before the definition of the tree type, inside its namespace.
This can be used defining small helper classes. Class varwithsort in
Section 3.1 should be defined with h_before:

e h_methods : Inside the definition of the tree type, after the methods cre-
ated by TreeGen. This is useful if one wants to define additional methods
of the tree type.

e h_after : After the definition of the tree class, but still within its names-
pace. Useful if one wants to define functions involving the tree type, (e.g.
operator << )

e cpp_front : At the front of the .cpp file. This can be used for putting
things in anonymous namespace. No namespace is added. This means if
the copied must be in the same namespace as the tree class, one has to
add the namespace prefix by onseself.

e cpp_back : At the back of the .cpp files. No namespace is added.

Each of the copy commands can be repeated arbitrarily often, and there is no
fixed order. Don’t include copy commands with an empty code block, because
the parser does not like them.

4 Using the Generated Tree Classes

Before the tree classes can be used, they have to be compiled. Make sure that
the input file contains the following include

#include "tvm/includes.h"

for every defined tree type. Make sure that the compiler finds the tvm directory
for including.



4.1 Constructors

For each tree type, each option defines a constructor. The arguments of the
constructor must fit to the option being constructed. The order of the arguments
must be the same as listed in the option, with the exception that the selector
must always be first. So, the order is:

e The selector.
e Values for the prefix fields, if the tree type has any.
e Values for the scalar fields, if the selected option has any.

¢ If the option has repeated fields, then either an initializer list, or a pair of
iterators (begin/end).

e Values for the local fields, if the option has any.

The total number of constructors can be quite big, and it is sometimes tricky
to call the right one.

e The parameters of the constructor must correspond to the option specified
by the selector. Unfortunately, the CTT type system is unable to check
this at compile time. If the field bool check is set to true, the selector
value will be checked at runtime. It is set by default, but it can be turned
off by editing the file.

e In case there are similar options with different number types, it can be
tricky to ensure that the right constructor is called. For example, if one
has options:

%option int { sel_int } # i : int
%option unsigned { sel_unsigned } # u : unsigned int
%option double { sel_double } # d : double

mytree( sel_int, 4 ) // Ok.

mytree( sel_double, 4 ) // Not ok, will call comstructor for int.
mytree( sel_double 4.0 ) // Ok.

mytree( sel_double, (double)4 ) // Ok.

mytree( sel_unsigned, 10 ) // Not ok, calls constructor for int.
mytree( sel_unsigned, 10u ) // Ok.

mytree( sel_unsigned, (unsigned) 10 ) // 0Ok.

e In case there are repeated fields, they can be put in a single initializer list.
If there is exactly one repeated field, the values for this field can be listed
between { }. For example, if the repeated fieldis [ s : std::string ],
one can write {}, { "hallo" },or{ "hello", "world" } as parameter.

If there is more than one repeated field, each repetition must be put in its
own pair of { }. For example, if the repeated fieldsare [ i : int, s : std::string ],



one can write {}, { { 1, "hallo" } },or{ { 2, "hello" }, { "world" } }
as parameter.

There is a potential problem when the initializer list is empty, namely that
it can bind to an initializer list of any type. If there are two options

[ s : std::string ]
[ i : int ]

and no further distinguishing fields, then the empty initializer list will bind
to both. In that case, one has to write std: :initializer_list< std::string > { }
or std::initializer_list< int > { }.

When there are two repeated fields, one has to use std: :pair< >. When
there are more, use std: :tuple.

[ i : int, s : std::string ]
// use std::initializer_list< std::pair< int, std::string >> { }
[ i : int, s : std:std::string, d : double ]
// Use std::initializer_list< std::tuple< int, std::string, double >> { }

e Instead of giving a single initializer list for a repeated field, one can also
provide a pair of iterators to the constructor. (We know about std: :range
but we don’t like it.) The iterators must be equality comparable, have
operator - ( ), have an operator ++ ( ), and also operator * ( ),
such that * yields the type of the repeated part. The rules are the same
as for the empty initializer list: If there is one repeated field, operator *
must yield the type of this field. If there are two repeated fields, operator *
must yield an std: :pair of these fields. If there are more repeated fields,
operator * must yield an std: :tuple of all repeated fields.

Repeated fields behave like vectors. This means that in general, no separate
container is needed because the tree type itself can be used as container.

4.2 Field Access

In order to access the selector, use sel( ) const. The only way to change the
selector is by assigning a new tree to the variable.

If the tree has prefix fields, they can be accessed by their name, used as
method of the tree. This means that if the original name was £, the field has to
be accessed as £( ). This function has a const and a non-const version. This
is safe because prefix fields are always stored locally.

The remaining fields depend on the selector and cannot be accessed directly.
Before they can be accessed, one first needs to check that the tree has the right
option. This can be done either by calling sel1( ) const, after which one knows
the option, or by directly calling option_is_X( ),

Once the option is known, one create a view and access the remaining fields
through this view. The view is similar to a down cast (if one would have used



a derived class). In order to create a view, call method view_X( ), where X is
the name of the option. It has two versions, a const version and a non-const
version.

The view can be stored in a local variable, or repeated every time when a
field is accessed. If one wants to store the view, write auto v = t. view_X( ),
where X is the name of the option that t is supposed to have. If the current
option of t is not X, calling view_X will result in an invalid_argument excep-
tion. In the examples that follow, we assume that auto v = t.view_X( ); was
called before. It one does not want to store the view, one can write t.view_X( )
instead of v:

e If the local field has name f, one can use v.f( ) to access it. If t is not
const, it is possible to assign to the field.

e If the scalar field has name f, one can use v.f ( ) to access it. It is not
possible to assign to scalar fields.

e If the repeated field has name £, one can use either v.f (i) to access it,
where 1 must be expression of type size_t. In order to determine how
many repetitions there are, use v. size( ). This method exist whenever
the option has repeated fields. It is not possible to assign to repeated
fields.

Scalar and repeated fields cannot be assigned to, but they can be updated.
Moreover, the number of repetitions of the repeated fields can be changed by
pushing or popping. So we get:

e Local fields can be assigned to by writing v.£( ) = ....

e Scalar fields can be updated by writing v.update_£( ... ).
e Repeated fields can be updated by writing v.update_f( i, ... ). Their
number can be increased by calling v.push_back( t1, ..., tn ), where

the arguments must provide a value for each repeated field.

The number of repetitions can be decreased by calling v.pop_back( ).
This removes one copy of each repeated field.

The implementation of push_back( ) is such that it has O(1) complexity
(amortized).

Update methods first compare the new value to the old value. If they are the
same, nothing is done. Otherwise, a unique copy is ensured (possibly needing
a reallocation), after which the field is assigned. We explain in the next section
how the update methods compare the new to the old value.

Adding or removing repeated fields will always result in reallocation, when
representation is shared. A tree can be used as container, so that it is usually not
necessary to construct repeated fields in another container: One can first call a
constructor with empty initializer list (possibly specifying its type, if needed),
then create a view on the constructed tree, and call push_back( ). There is no
way to insert repeated fields in the middle.



5 Update and Very Equal

Scalar and repeated fields cannot be directly assigned to, because they are po-
tentially shared, which would destroy value semantics. Instead of being assigned
to, scalar and repeated fields can be updated. The difference between updating
and assigning is that updating is a method of the tree class, so that the tree
knows when a change takes place. In order to enable assignment, the tree would
have to give out a non-const reference, after which it has no control any more
about modifications.

Update methods reallocate when the new value is distinct from the old value,
and the tree is currently sharing its representation. In that case, a unique
representation is created. Since comparing two values can be expensive, one
should try to use pointer identity whenever possible. This avoids the need for
deep comparisions because all nested structures are built with pointers.

Which types are compared by value, and which types will be compared by
pointer, is determined by the distinct method. The update method calls
distinct(tl,t_2), which is defined as follows, dependent on the type T of t1
and t2:

1. If either of very_equal( t1, t2 ) ortl. very_equal_to( t2 ) const
is defined, then distinct ( t1, t2 ) isthesameas !very_equal( t1, t2 )
or 'tl. very_equal_to( t2 ) const. It is not allowed that both are de-
fined.

2. Otherwise, distinct( t1, t2 ) defaults into t1 != t2.

Tree types generated by TreeGen have a very_equal_to( ) const method,
which is defined as follows:

1. If the selectors are different, then the trees are not very equal.

2. At this point, we know both trees have the same option, so that they have
the same fields.

If there are prefix fields, and one of the prefix fields in the first tree is
distinct from the corresponding field in the other tree, then the trees
are not very equal.

3. If there are local fields, and one of the local fields in the first tree is
distinct from the corresponding field in the other tree, then the trees
are not very equal.

4. If there are scalar or repeated fields, then these fields are stored on the
heap below a pointer. The trees are very equal iff the pointers are equal.

By default, types that are not generated by TreeGen have no implementation
of very_equal, so that they will be compared by !=. If that is too expensive,
one can define very_equal( ) for the desired type. The intuitive meaning
should always be: Everything local should be equal by value, and everything
below a pointer should be identical. This is an example of an implementation
of very_equal for vectors:



template< typename T >
bool very_equal( const std::vector<T> & vl, const std::vector<T> & v2 )
{ return v1. data( ) == v2. data( ); }

6 In-Place Rewriting

Updating is sufficient for many applications, but it cannot be used for in-place
rewriting. Consider the following tree type for arithmetic on natural numbers:

%define nat ( nat_zero )

%option zero { nat_zero } =>

%option succ { nat_succ } => pred : nat

%option unary { nat_neg } => sub : nat

%option binary { nat_add, nat_mul, nat_sub, nat_div }
=> subl : nat, sub2 : nat

Suppose that we have a nat n of form succ’(add(zero, succ’(zero))), and a
rewrite system

add(X,0) = X
add(X,succ(Y)) = succ(add(X,Y))

Obviously, n will be normalized into succ*/(zero). In order to implement
rewriting, one must create a function with signature nat try_rewrite( const nat& n ),
which returns a nat that is either very equal to n, or rewritten. For the subcases,

one has to write

switch( n.sel( )) {

case nat_add:
case nat_mul:
{ auto nl =n; // Cannot update n directly, it’s const.
auto v = nl.view_binary( );
v. update_subl( try_rewrite( v.subl( ));
v. update_sub2( try_rewrite( v.sub2( ));
return ni; }

}

This code, although nice and simple (and hence often acceptable) is incapable
of in-place rewriting. Because n is const, it cannot be updated directly. Hence
it has to be copied into n1. But now n1 is shared, and update will always make
a unique copy if the subterm is changed.

In order to solve this problem, one must observe that the original n is nearly
always irrelevant. It is probably a subterm of a surrounding term which we
are trying to rewrite. After returning, it will be updated with our result. As a
consequence, the sharing ’is not real’. The same applies when we are the top
level call. Very likely, the programmer has written m = try_rewrite(m) and
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the variable that we are sharing with, will be overwritten on return. In order
to avoid this irrelevant sharing, one can use std::move. Since we want to do
this recursively, we need a method that moves a subtree out of a tree if it is
not shared, and otherwise creates a copy. This operation is guaranteed to be
safe, because once we encounter a shared tree, we will be working on a copy,
and all trees below it will also be shared and copied because of that. We call
the new operation extract. We could also have called it borrow because that is
the intended use, but since there is no guarantee that the user will give it back,
‘extract’ seemed more appropriate. Using extraction, the rewrite system can be
implemented as follows:

nat try_rewrite( nat n ) {
if( n.sel( ) == nat_add ) {
auto v = n.view_binary( );

if( v.sub2( ).sel( ) == nat_zero )
return v.subl( ); // X + 0 = X:

// X + succ(Y) => succ( X + Y )

if( v.sub2( ).sel( ) == nat_succ )
return nat( nat_succ, nat( nat_add,
v.sub1( ), v.sub2( ). view_succ( ). pred( )));
}

switch( n.sel( ))
{

( similar cases omitted )

case nat_add: case nat_mul: case nat_sub: case nat_div:
{ auto v = n. view_binary( );
v.update_subl( try_rewrite( v.extr_subl( )));
v.update_sub2( try_rewrite( v.extr_sub2( )));
return n; }

}

Function try_rewrite must be called asm = try_rewrite(std: :move(m)). If
one forgets the move, the term will be still copied on every replacement. Our
solution is related to the solution in [?]. Matching can be viewed as extracting
all subtrees at once, after which the tree can be disabled (moved-out). Upon
return, the allocater tries to a reuse a disabled tree if there is one.

11



7 Possible Problems (with solutions)

We give a list of frequently occuring problems with their solutions: and their
solutions:

. inconsistent local/heap distribution for ( { }, { size_t }, { } )

This error occurs when two options have the same fields in the same order,
but with a different distribution between local and heap fields. In that
case, the constructor does not know where to place the fields. Since the
optimal placement depends on the size of the types, there is no reason to
use different placements for the same sequence of types. As a consequence,
it is easy to fix this error.

e Empty initializer lists ({ }) may create problems at compile time, because
the compiler is unable to determine the intended type when seeing { }
alone. If this error occurs, write std: :initializer_1list<T> ( ). This
problem will not occur when the initializer list is non-empty.

e Local fields cannot be recursive. The error will be
option: field is a recursion in local field.

o If the compiler complains that it cannot find some constructor of the
symbol class, the most likely cause is that no symbol was declared with
the required attribute type.

e Conversions between integer types may create unexpected problems dur-
ing compilation. If one has constructors c( selector, unsigned int )
c( selector, size_t ).

° empty option has scalar fields

empty state has repeated fields

These errors occur when the moved-out option (defined by the %define
command) has scalar or repeated fields. This is not allowed, because scalar
and repeated fields are stored on the heap, and the moved out state should
not hold resources. If possible, the fields can be preceeded by # to make
them local.

e The current implementation cannot handle #if #endif in copied code. I
am not sure if it is important enough to try to fix it.
8 Concluding Remarks

Here are some problems that we may want to fix in the future:
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¢ Add moving constructors. Since most constructors have many arguments,
this would potentially result in an exponential explosion of constructors.
Maybe it can be solved by introducing helper concepts.

e Add moving update operators. The would move the new value into the
old value.
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